Probabilistic solutions of fractional differential and partial differential equations and their Monte Carlo simulations

نویسندگان

چکیده

The work in this paper is four-fold. Firstly, we introduce an alternative approach to solve fractional ordinary differential equations as expected value of a random time process. Using the latter, present interesting numerical based on Monte Carlo integration simulate solutions and partial equations. Thirdly, show that allows us find fundamental for (PDEs), which derivative Caputo sense space one Riesz–Feller sense. Lastly, using Riccati equation, study families PDEs with variable coefficients allow explicit solutions. Those connect Lie symmetries PDEs.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact and numerical solutions of linear and non-linear systems of fractional partial differential equations

The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

exact and numerical solutions of linear and non-linear systems of fractional partial differential equations

the present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. the proposed scheme is based on laplace transform and new homotopy perturbation methods. the fractional derivatives are considered in caputo sense. to illustrate the ability and reliability of the method some examples are provided. the results ob...

متن کامل

Topological soliton solutions of the some nonlinear partial differential equations

In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...

متن کامل

Fractional type of flatlet oblique multiwavelet for solving fractional differential and integro-differential equations

The construction of fractional type of flatlet biorthogonal multiwavelet system is investigated in this paper. We apply this system as basis functions to solve the fractional differential and integro-differential equations. Biorthogonality and high vanishing moments of this system are two major properties which lead to the good approximation for the solutions of the given problems. Some test pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chaos Solitons & Fractals

سال: 2023

ISSN: ['1873-2887', '0960-0779']

DOI: https://doi.org/10.1016/j.chaos.2022.112901